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The bicyclic sulfone 28, which has the intact carbon skeleton of phomactins, was prepared using a ster-
eoselective [2,3]-Wittig Still rearrangement, a ytterbium triflate-mediated addition of a vinyllithium
reagent to an aldehyde and macrocyclisation via an intramolecular sulfone alkylation, as key steps. Dur-
ing studies into the conversion of this intermediate into phomactin A, it was found that oxidation of
homoallylic alcohols using TPAP can give unsaturated keto-aldehydes, and the stereoselectivity of reduc-
tion of a ketone at C(14) is influenced by the presence of a remote sulfonyl group at C(10).

� 2009 Elsevier Ltd. All rights reserved.
Phomactin A 1 is the parent member of a group of diterpenes,
the phomactins, which are challenging targets for total synthesis,
and which possess interesting biological activity including platelet
activating factor antagonism.1 Two total syntheses of phomactin A
1 have been reported to date,2 together with syntheses of phoma-
ctins D,3 G4 and B2,5 and many partial syntheses.6 The chemistry
of the phomactins has been reviewed.7
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Thomas).
In our work,8 the monoprotected diol 2 was identified as an
advanced intermediate which could be incorporated into syntheses
of several members of the phomactin family. It was prepared by a
synthesis which involved a stereoselective [2,3]-Wittig rearrange-
ment of the propargylic ether 3 which gave alcohol 4. However, the
conversion of this alcohol into the required intermediate 2 proved
difficult to scale up. We now report an improved synthesis of the
analogous diol 30 and several unexpected late-stage transforma-
tions which were encountered during attempts to complete a
synthesis of phomactin A.

It was decided to use the Still variation9 of the [2,3]-Wittig
rearrangement to prepare intermediates for macrocyclisation. A
synthesis of the tributylstannanes 17 and 18, precursors for the
Wittig rearrangements, is outlined in Scheme 1. Keto-ester 5,8 as
a 75:25 mixture of epimers at C(6), was converted into its 2-
hydroxymethyl analogue 7 by oxidation of enol ether 6 using
methyl(trifluoromethyl)-dioxirane generated in situ.10 Following
silylation of the hydroxyl group, Luche reduction11 of the enone
8 gave the alcohol 9 as the major product in 65% isolated yield after
chromatographic separation from its C(6)-epimer derived from the
minor epimer of keto-ester 5. Following conversion to the tert-
butyldiphenylsilyl ether 10, reduction of the methoxycarbonyl
group using lithium triethylborohydride gave the alcohol 11 which
was converted into thio-ether 13 via mesylate 12. Selective desily-
lation then gave the primary alcohol 15 which was alkylated to
give the (tributylstannyl)methyl ether 17. Thio-ether 13 was also
oxidised to the sulfone 14 which was taken through to the corre-
sponding (tributylstannyl)methyl ether 18 by O-deprotection and
alkylation.

The [2,3]-Wittig rearrangements of the lithiated methyl ethers
generated from the sulfide 17 and sulfone 18 were found to pro-
ceed with very different stereoselectivities. Thus, on treatment
with one equivalent of n-butyllithium, sulfide 17 rearranged to
give the homoallylic alcohol 20, in which the hydroxymethyl and
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Scheme 3. Reagents and conditions: (i) py.SO3, DMSO, DCM, iPr2NEt, rt (95%); (ii)
24, tBuLi, �78 �C, 1 h, Yb(OTf)3, �78 �C, 4.5 h (85%); (iii) BOMCl, iPr2NEt, TBAI, rt,
16 h (92%); (iv) (a) AcOH:H2O:THF (3:1:1), rt, 2 days (80%) (b) MsCl, Et3N, THF, 0 �C,
45 min, LiBr, THF, 1.5 h (92%); (v) 27 (0.05 M), NaHMDS (syringe pump, 40 min),
THF, 0 �C, 30 min (85%); (vi) TBAF, THF, rt (95%); (vii) Na, NH3, THF, EtOH, �78 �C,
2 days (95%).
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Scheme 1. Reagents and conditions: (i) TBSOTf, Et3N, DCM, rt (72%); (ii) 1,1,1-
trifluoropropanone, Oxone�, NaHCO3, Na2EDTA, MeCN, H2O, 0 �C (65%); (iii) TBSCl,
imid., DCM, 0 �C to rt (96%); (iv) NaBH4, CeCl3�7H2O, MeOH, �78 �C (65%); (v)
TBDPSCl, imid., DCM, 0 �C–rt (86%); (vi) LiEt3BH, THF, 0 �C (80%); (vii) MsCl, Et3N,
DCM, 0 �C (95%); (viii) PhSH, NaH, DMF, heat (72%); (ix) ammonium molybdate,
H2O2, EtOH, 0 �C to rt (88%); (x) HCl, EtOH, rt (15, 90%; 16, 90%); (xi) NaH,
Bu3SnCH2I, THF, rt (17, 82%; 18, 86%).
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phenylthiomethyl substituents were trans-disposed with respect
to the six-membered ring, as the major product. In contrast,
rearrangement of the sulfone 18, which required an excess of
n-butyllithium, gave the homoallylic alcohol 21 in which the
hydroxymethyl and phenylsulfonylmethyl substituents were cis-
disposed with respect to the six-membered ring, see Scheme 2.12

The structure of the alcohol 21 prepared by rearrangement of
the sulfone 18 was confirmed by X-ray crystallography later in
the synthesis, vide infra, and was identical to the product prepared
by oxidation of the minor product from rearrangement of sulfide
17. Although the origin of this stereochemical dichotomy was not
investigated, the need for 2 equiv of base for an efficient rearrange-
ment of sulfone 18, and the stereoselectivity of this rearrangement,
are consistent with coordination of the lithiated sulfone with the
ethereal oxygen directing the Wittig rearrangement to the face of
the double bond cis to the lithiated sulfonyl methylene group,
see the possible boat-like intermediate 22.12

Addition of the vinyllithium reagent generated from the vinylic
iodide 2413 to the aldehyde 23 prepared by oxidation of alcohol 21
using Parikh–Doering conditions,15 was best achieved after
transmetallation using ytterbium triflate16 and gave alcohol 25
essentially as a single diastereoisomer, see Scheme 3. The stereose-
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Scheme 2. Reagents and conditions: (i) nBuLi, THF, �50 �C (94%; 19:20 = 8:92); (ii)
nBuLi (2 mol equiv), THF, �50 �C (21, 65%); (iii) ammonium molybdate, H2O2, EtOH,
0 �C (86%).
lectivity of this reaction, which is consistent with chelation control,
was also confirmed later in the synthesis by X-ray crystallography.
Following protection of the alcohol as its benzyloxymethyl ether
26, selective removal of the tert-butyldimethylsilyl group, mesyla-
tion and in situ treatment of the mesylate with lithium bromide,
gave the bromide 27. Cyclisation was achieved using sodium hexa-
methyldisilazide as base and gave the bicyclic sulfone 28 in an
excellent yield (85%) as a single diastereoisomer. The structure of
sulfone 28 was established by X-ray crystallography, see Figure
1, which also confirmed the earlier stereochemical assignments.
Desilylation then gave alcohol 29, and reductive desulfonylation
under Birch conditions with cleavage of the benzyloxymethyl
ether, gave diol 30.
Figure 1. An ORTEP projection of the structure of sulfone 28 as determined by X-
ray crystallography.17
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Diol 30 has the carbon skeleton of phomactins with the re-
quired configuration at C(2) for directed epoxidation of the C(3)–
C(4) double bond,2a,b albeit with the undesired configuration at
C(14) for direct incorporation into phomactin A. Reaction with
tert-butyl hydroperoxide in the presence of VO(acac)2 gave the re-
quired mono-epoxide 31. However, attempts to introduce the oxy-
gen functionality at C(20) by epoxidation of the exocyclic
methylene group of mono-epoxide 31 were unsuccessful, second-
ary epoxidation instead taking place at the C(7)–C(8) double bond
under microwave conditions. Interestingly, attempted oxidation of
dihydroxyepoxide 31 to the corresponding diketone under the
Parikh–Doering conditions15 gave the a,b-unsaturated ketone 32,
the C(1)–C(2) double bond geometry provisionally being assigned
by analogy with earlier work (Scheme 4).18

It was decided to study inversion of the configuration of the
alcohol 29 at C(14) and formation of the tetrahydropyranyl ring
present in phomactin A 1 before attempting oxidation of the exo-
cyclic methylene group. Preliminary studies of oxidation of this
alcohol using a range of oxidants including Parikh–Doering15 or
Swern conditions, the Dess–Martin periodinane, PDC or PCC, gave
either returned starting material or complex mixtures of products.
Initial studies of direct inversion using a Mitsunobu reaction were
also unsuccessful. However, oxidation with tetrapropyl-ammo-
nium perruthenate (TPAP)19 gave a good yield of the unsaturated
keto-aldehyde 33, see Scheme 5.
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The clean formation of keto-aldehyde 33 was unexpected. Anal-
ogous oxidations of homoallylic steroidal alcohols are known, but
only modest yields are generally obtained unless ultrasound is
used.20 However, this oxidation of alcohol 29 has achieved several
transformations required for its conversion into phomactin A
including oxidation at C(14) and C(20), and the introduction of
the C(1)–C(15)-double bond.

Reduction of keto-aldehyde 33 using di-isobutylaluminium hy-
dride gave the diol 34, the configuration assigned at C(14) being
consistent with NOE studies including the enhancement of H(14)
on irradiation of the 12-methyl group. Reductive removal of the
sulfonyl and benzyloxymethyl groups under Birch conditions then
gave the triol 35 and esterification gave the crystalline triacetate
36 the structure of which was confirmed by X-ray diffraction, see
Figure 2.

The triol 35 would appear to be a useful advanced intermediate
for a synthesis of phomactin A 1. However, preliminary studies of
epoxidation of its mono-tert-butyldiphenylsilyl ether 37 led to
the formation of a significant amount of a bis-epoxide due to epox-
idation of both the C(3)–C(4) and C(1)–C(15) double bonds, as well
as the required C(3)–C(4)-mono-epoxide. This was to be expected
since analogous results were observed by Pattenden during studies
of the epoxidation of the corresponding bis-(4-methoxybenzyl)
ether 38,2a,b and so rather than attempt to optimise the
mono-epoxidation of triene 37, it was decided to introduce
the C(3)–C(4)-epoxide before the TPAP oxidation, that is, before
the introduction of the C(1)–C(15) double bond.

Oxidation of the unprotected dihydroxyepoxide 31 using TPAP
gave a single product which was provisionally identified as the lac-
tone 39, see Scheme 6. However, preliminary attempts to reduce
this using di-isobutylaluminium hydride gave complex mixtures
of products and so, in order to avoid lactone formation, it was nec-
essary to study the TPAP oxidation of an epoxide analogous to 31,
but with the 2-hydroxyl group protected.
Figure 2. An ORTEP projection of the structure of the triacetate 36 as determined
by X-ray crystallography.17
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Regioselective monosilylation of the dihydroxyepoxide 31 gave
the silyl ether 40, see Scheme 7, and alkylation of the free hydroxyl
group gave the benzyl ether 41 which was desilylated to give the
required hydroxyepoxide 42. Oxidation with TPAP proceeded as
expected to give keto-aldehyde 43 but reduction using di-iso-
butylaluminium hydride gave mainly diol 44 which was shown
to have the wrong configuration at C(14) by determination of the
X-ray crystal structure of its diacetate 45, see Figure 3.

The reductions of keto-aldehydes 33 and 43 using di-isobutylal-
uminium hydride proceed with opposite stereoselectivities with
respect to the ketone functionality at C(14). This unexpected result
may be due to the phenylsulfonyl group in keto-aldehyde 33
shielding the lower face of the 14-carbonyl group so directing hy-
dride attack leading to the required configuration at C(14) in alco-
hol 34. Keto-aldehyde 43 lacks the 10-phenylsulfonyl substituent
and steric hindrance by the cis-disposed 12- and 13-methyl sub-
stituents would appear to dominate leading to the undesired con-
figuration at C(14).

In our system, the phenylsulfonyl group at C(10) may be influ-
encing the stereoselectivity of reduction of a ketone at C(14).
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Figure 3. An ORTEP projection of the structure of the diacetate 45 as determined by
X-ray crystallography.17
Moreover, the introduction of the C(3)–C(4) epoxide, which relies
on the presence of a hydroxyl group at C(2), needs to take place
before the introduction of C(1)–C(15) double bond. Therefore it
would appear necessary to have a protecting group on the
2-hydroxyl substituent which can be removed without concomi-
tant reductive cleavage of the phenylsulfone. Introduction of the
C(3)–C(4)-epoxide, TPAP oxidation and DIBAL-H reduction, fol-
lowed by reductive removal of the phenylsulfone, may then lead
to phomactin A.

Conclusions

This work has led to advanced intermediates and provided use-
ful chemical insight which may be useful in syntheses of phomac-
tins. Of interest is the complementary stereoselectivity observed
for [2,3]-Wittig rearrangements of the lithiated methyl ethers gen-
erated from the sulfide 17 and sulfone 18, the oxidations using
TPAP of the homoallylic alcohols 29, 31 and 42, and the stereo-
chemical dichotomy observed during the reduction of the keto-
aldehydes 33 and 43 using di-isobutylaluminium hydride. Present
work is concerned with the further development of these studies
and the completion of a synthesis of phomactin A 1.
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